Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
نویسندگان
چکیده
Co-processing of formic acid or carbon dioxide with CH4 (FA/CH4 = 0.01-0.03 and CO2/CH4 = 0.01-0.03) on Mo/H-ZSM-5 catalysts at 950 K with the prospect of kinetically coupling dehydrogenation and deoxygenation cycles results instead in a two-zone, staged bed reactor configuration consisting of upstream oxygenate/CH4 reforming and downstream CH4 dehydroaromatization. The addition of an oxygenate co-feed (oxygenate/CH4 = 0.01-0.03) causes oxidation of the active molybdenum carbide catalyst while producing CO and H2 until completely converted. Forward rates of C6H6 synthesis are unaffected by the introduction of an oxygenate co-feed after rigorously accounting for the thermodynamic reversibility caused by the H2 produced in oxygenate reforming reactions and the fraction of the active catalyst deemed unavailable for CH4 DHA. All effects of co-processing oxygenates with CH4 can be construed in terms of an approach to equilibrium.
منابع مشابه
Stability, structure, and oxidation state of Mo/H-ZSM-5 catalysts during reactions of CH4 and CH4–CO2 mixtures
Mo2O5 2+-ZSM-5 (Mo/Alf = 0.4, Si/Alf = 20) samples prepared by sublimation of MoO3 were carburized in CH4 to form MoCx clusters active in CH4 pyrolysis and then exposed to different CO2/CH4 mixtures. CO2/CH4 reactant ratios between 0 and 0.1 increased catalyst stability but decreased pyrolysis rates, and ratios above 0.1 led to a sudden loss of activity that was reversed after removal of CO2. B...
متن کاملIsothermal activation of Mo2O5(2+)-ZSM-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties.
The dynamics of carburization of Mo-oxo precursors exchanged onto H-ZSM-5 strongly influence initial induction periods and steady-state rates during catalytic pyrolysis of CH4 to alkenes and arenes at 900-1000 K. The effects of co-reactants and of activating conditions were examined by on-line time-resolved mass spectrometric analysis of effluent streams using rigorous analyses to account for e...
متن کاملDynamics and Separation-based Adsorption of Binary Mixtures of CH4, CO2 and H2S on MIL-47: GCMC and MD Studies
This study aimed to investigate the adsorption of CH4, CO2, H2S at a temperature of 298.15 K and pressurerange of 0.1 to 30 atm, and compare the results with experimental data for MIL-47 using GCMC. Themaximum CH4, CO2 and H2S adsorptions were 3.6, 10.45, and 12.57 mol.kg-1, respectively. In addition, theselectivity for binary mixtures of CH4/CO2 and CH4/H2S was calculated. Th...
متن کاملStructural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium
Kinetic and isotopic tracer methods led to a simple and unifying mechanistic proposal for reactions of CH4 with CO2 and H2O, for its decomposition on Rh clusters, and for water–gas shift reactions. Kinetic rates for forward reactions were measured by correcting net rates for approach to equilibrium and by eliminating transport artifacts. These rates were proportional to CH4 pressure (5–450 kPa)...
متن کاملIsotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts
Isotopic tracer and kinetic measurements were used to determine the identity and reversibility of elementary steps required for CH4–CO2 , CH4–H2O and CH4 decomposition reactions on supported Ir clusters. The results led to a simple and rigorous mechanism that includes steps required for these reactions as well as water–gas shift reactions. All three CH4 reactions gave similar forward rates, rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 29 شماره
صفحات -
تاریخ انتشار 2013